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ABSTRACT

In this digital age, cryptography has formed the backbone of many computer functions.
Cryptography drives online commerce and allows privileged information safe transit be-
tween two parties as well as many other critical internet uses. The presence of a strong
pseudo-random number generator (PRNG) is an absolute requirement in modern cryptog-
raphy. All modern ciphers draw their strength from having this strong generator. There
are currently many ways to generate a secure PRNG. Most current PRNGs generate their
stream as a sequence of bits. As a result, most tests performed to ensure randomness are
made for binary streams. This thesis introduces a way to generate an integer random num-
ber stream using generalized Boolean functions. Additionally, this thesis discusses how to
test an integer stream using binary tests. Data from this thesis suggests that high levels
of complexity can be obtained using simple quadratic (or other higher degree) generalized
combiners. Additionally, our data discusses the ability to generate sequences with high
degrees of randomness using a variety of combiner choices for the generalized Boolean
function.
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Executive Summary

Cryptography has become embedded into the very fabric of the internet. Almost every
transaction or exchange of data now involves some sort of encryption. Modern encryption
standards are thought to be incredibly secure; however, that claim is invalided if there is
not a strong source to randomness for the encryption methods to draw their strength from.
Generating truly random numbers is possible, but impractical. Instead, pseudo-random
number generators(PRNG) provide a way of quickly and efficiently generating streams that
appear very random.

One way to generate a PRNG is to use the output of Linear Feedback Shift Registers
(LFSRs). Additionally, a combining Boolean function is used with an LFSR to destroy
the linearity of the LFSRs output stream. Using combiners with LFSR is commonplace.
This thesis introduces a method of generating pseudo-random number sequences using a
generalized Boolean function. Not much is known about the properties of using generalized
Boolean functions as combiners. One of the effects of using a generalized Boolean function
is that the output stream can consist of integers, rather than bits if a Boolean combiner is
used.

Data from our thesis shows that a significant increase of complexity can be achieved by a
generalized Boolean function output when compared to the output of a Boolean combiner.
Additionally, our data shows that high levels of randomness can be obtained using this
method.
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CHAPTER 1:
Introduction

To claim goodmodern cryptographywithout a proper source of randomness is an impossible
task. Randomness forms the background of almost all modern forms of cryptography
through its prevalent use in public/private key generation, session key generation, and
nonces among many other uses. While it is so important, finding a true random number
generator efficiently is next to impossible; so, certain compromises to provable security
must be made. Such a random number generator is called pseudo-random number generator
(PRNG) and is the subject of this thesis.

To classify as a PRNG, two main criteria need to be met to maintain confidence in its
randomness. The first is that the stream is statistically random, and the second is that
stream is unpredictable. Testing the randomness of streams to make sure they satisfy those
two properties and more is possible through the suite of tests published by the National
Institute of Standards and Technology (NIST). Many methods exist for generating a pseudo-
random stream of numbers. Some examples include the Blum-Blum-Shub generator, the
Linear Congruential Generator, and Linear Feedback Shift Registers (LFSR) combined with
Boolean functions. This thesis demonstrates a new method of generating a random stream
through the output of generalized Boolean functions, and shows that this output passes a
majority of the randomness tests in addition to showing a significant increase in complexity.

1.1 Background
Cryptography has existed for thousands of years. In its earliest form, simple ciphers were
used to mask battle plans or carry hidden messages between spies. The Caesar cipher,
purported to be used by Julius Caesar, is the most famous of these. The so called ‘Caesar
cipher’ was just a simple shift cipher that shifted every letter in the message three steps in
the alphabet. For example the phrase

weattackatdawn
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put into a Caesar cipher that shifts every character 3 letters would produce the ciphertext

zhdwwdf ndwgdzq.

Since then cryptography has become significantly more complex. Today’s ciphers are based
on rigorous mathematics, and are thought to be extremely secure.

1.1.1 Ciphers
Of all of today’s ciphers, the only cipher that has perfect, provable security is the one-time
pad cipher. The one-time pad cipher takes a stream of random bits as its key, then performs
the exclusive OR (XOR) operation on a bit of the key and a bit of the message for the entire
length of the message. For example, if the message is 01011 and the key is 10110, the
ciphertext will be 11101. As long as the key was generated from a random source, and the
key is not reused on any part of the message, it is impossible to crack this code. However,
this code is very cumbersome to use, since the key needs to be as long as the message,
can never be reused, and must be in the possession of both parties. Modern encryption
standards make slight sacrifices to provable security in order to provide ease of use, while
still maintaining acceptable levels of security.

One of the most widespread ciphers in use today is the Advanced Encryption Standard
(AES). AES is an example of a block cipher, where the plaintext message is processed in
chunks. AES is considered very secure, and it is the U.S. government’s recommendation
for encrypting classified documents as reported in [1]. AES, and block ciphers in general,
are considered symmetric ciphers. A symmetric cipher is a cipher where the same key is
used to encrypt and decrypt the communication. In addition to a key, a good source of
randomness is required in order to make the encryption secure.

1.1.2 Randomness
There are many sources of true randomness that could be used in a cipher. For example, the
atmospheric noise generated as a result of solar radiation is considered a random source. The
website, www.random.org, publishes random numbers generated through listening to this
source of noise [2]. The Handbook of Applied Cryptography [3] lists many other sources
such as the radioactive decay of atoms and the vibrations resulting from the turbulent flow
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of a hard drive platter spinning through air. While there are several ways to generate true
random numbers, none of these are practical for widespread use in cryptography.

PRNGs are used to provide a secure, yet efficient, way of creating seemingly random
number sequences. PRNGs are by definition deterministic since they take a seed that will
always generate the same output. The strength in a PRNG comes from the requirement that
they have such complexity that it is computationally impossible to recover the generating
function used to create the stream. Many types of PRNGs exist, but this thesis focuses
entirely on the PRNGs that use LFSRs and combiners. As mentioned in [4], LFSRs are
used extensively in stream ciphers to generate the random bits required. LFSRs are also
very popular for use in embedded systems because they can be easily coded in hardware.
However, LFSRs are, by themselves, not secure by. They have high degrees of linearity,
and Boolean functions called combiners are required to destroy their linearity in order to
make them more secure.

1.2 Motivation
Current PRNGs that utilize LFSRs and combiners are cryptographically secure and in
common use. Much is known about their randomness and complexity and they have been
the subject of academic research for at least the past 50 years. Since LFSRs are linear by
nature, calculating their actual complexity can be efficiently done using the Berlekamp-
Massey algorithm. By design, these algorithms produce a seemingly random bit stream
that is composed of an alphabet of 2 bits, 0 and 1. What a generalized Boolean function
provides is the ability to produce a stream of integers in Zn (integers modulo n) in a single
computation cycle. With regular combiners, only 1 bit at a time is possible per computation
round. In order to get enough bits to form an integer in Zn, multiple rounds need to be
performed. With a generalized Boolean function, obtaining an integer only requires one
round, so significant decreases in computation time can be achieved. Additionally, adding
another combining step has the potential to significantly increase the complexity of the
sequence, which is a result that this thesis shows.

Having a PRNG that outputs a stream of integers has several uses. One application could
be its use as lookup indexes for matrices where the lookup index needs to be randomly
generated. For example it could be used as the lookup function for the S-boxes of AES or

3



DES. Additionally, it could see use in Quantum computing where computations occurs in
Z4 instead of Z2.

Not much prior work has been done investigating the combining properties of generalized
Boolean functions, so the work this thesis presents is novel. Specific areas on interest
include the complexity of these streams and whether or not they are sufficiently random for
use in cryptographic applications.
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CHAPTER 2:
Generalized Boolean Functions

This chapter provides the mathematical background of how the pseudo-random sequences
of this thesis were generated. Additionally, it discusses what the linear complexity of a
sequence is and how it can be calculated. The chapter also provides a description of LFSRs,
Boolean combiner functions, and generalized Boolean functions and it also considers how
an output stream from a generalized Boolean function can be used as a pseudo-random
number generator.

Of the available choices for PRNGs, LFSRs are very popular for many reasons. LFSRs
are efficient to implement in hardware and have easily calculable properties. However,
additional levels of operations are required in order to make it cryptographically secure.
Boolean functions, which can be used as combiners, are chosen to increase the complexity
of the LFSR through a number of ways. A generalized Boolean function takes the process a
step further by using the output bits from multiple combiners to create a stream of integers
rather than bits.

2.1 Linear Feedback Shift Registers
An LFSR can be defined as a series of stages, or registers, where each stage has an input bit,
an output bit, and a feedback function that acts upon it. The movements of bits are governed
by a clock, with one step in the clock cycle advancing all the bits in the LFSR forward one
position. The output stream is composed of the content of the output bit of the first stage of
the LFSR at every clock cycle [3]. The content from the last stage is fed into the feedback
function. The feedback function operates only on certain stages, called taps, and XORs the
contents of the bit from the last stage with the contents of the taps sequentially to generate
the input bit of first stage of the LFSR. This can be represented using Definition 2.1.1 which
is taken from [3].

Definition 2.1.1 Given the initial state of an LFSR as [sL−1, ..., s1, s0], the output sequence
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s = s0, s1, s2, ... can be determined by the following equation

s j = (c1s j−1 + c2s j−2 + · · · + cLs j−L) mod 2 f or j ≥ L.

A feedback function can be represented either as a recurrence relation or as a polynomial.
The polynomial has a general form of

P(x) = 1 +
L∑

i=1
ci xi,

where ci are the taps and L is the order of the LFSR. For example, the following two LFSRs
are the same LFSR represented in two different ways. The following equation is an LFSR
in recurrence form

xi+4 = xi ⊕ xi+1. (2.1)

With 2.1, it is obvious how the LFSR is constructed, with the next bit relying on the
generating function of the previous bits. The next equation is the same LFSR in its
polynomial form

1 + x + x4. (2.2)

The polynomial form is the more common way of representing an LFSR. The highest power
of the polynomial determines the order of the LFSR.

Figure 2.1 shows this LFSR graphically with the stages and taps to provide a visual way of
representing the recurrence relation and the polynomial.

Figure 2.1. The LFSR from Equation 2.2 Graphically Depicted.

In order to work, an LFSR needs to be seeded with initial values. It is important that the
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initial seed be of a good random source in order to make the output of the LFSR hard to
predict. Once seeded, the number of iterations required to regenerate the seed of the LFSR
is called the period, or length, of the LFSR. In Example 2.1.1, the LFSR generated from
Equation 2.2 will be examined to show how an LFSR works in practice.

Example 2.1.1 The values of 1 + x + x4

For this example, the LFSR has a seed of 11010. Table 2.1 will show the values of LFSR at
every step.

Table 2.1. The Stream Generated in Example 2.1.1

Step xi xi+1 xi+2 xi+3 xi+4

0 1 1 0 1 0
1 0 1 1 0 1
2 0 0 1 1 0
3 0 0 0 1 1
4 1 0 0 0 1
5 0 1 0 0 0
6 1 0 1 0 0
7 1 1 0 1 0

The output stream from this LFSR is 0001011, which is the first bit from every cycle.

A non-singular LFSR is an LFSR where the degree of its feedback polynomial is equal to
the order of the LFSR. This result is interpreted in [4] as any sequence by a non-singular
LFSR of length L that is periodic and whose period does not exceed qL − 1.

A polynomial is considered primitive if it is irreducible over Z2. A more general definition
that comes from [3] is Definition 2.1.2.

Definition 2.1.2 An irreducible polynomial f (x) ∈ Zp[x] of degree m is called a primitive
polynomial if a root of f is a generator of F∗pm , the multiplicative group of all the non-zero
elements in Fpm = Zp[x]/ f (x).
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In less formal terms, the polynomial is primitive if any of its roots generate themultiplicative
group F∗pm and is irreducible. There exists much research into primitive polynomials, and
extensive tables have been published that list all primitive polynomials up to a certain
degree. We used primitive polynomials for this thesis, and the polynomial in Equation 2.2
is primitive. One of the consequences of having a primitive polynomial is that the period
of the non-singular LFSR will be maximal for all non-trivial seeds.

LFSRs have several properties that make them ideal for use in cryptography. The first
is that they are very easy to implement in hardware. An LFSR only requires bit shifts
and logical operations, so all instructions can be handled at the hardware level and can be
performed very efficiently. Additionally, when chosen with a primitive polynomial as the
feedback function, LFSRs can have a very large period, which hardens them against certain
cryptographic attacks. LFSRs with a maximal period will have good statistical properties
such that "the distribution of patterns having fixed length of at most L is almost uniform,"
which is a useful property for cryptography [3]. LFSRs, however, have some drawbacks
due to the fact that they are very linear in nature and can be easily regenerated using the
Berlekamp-Massey algorithm. This can be avoided through the use of a Boolean function
to greatly increase the linear complexity.

2.2 Combiners
In general, a combiner can create non-linear output from LFSRs in multiple ways. The first
is to take the outputs of several LFSRs and feed it into one combining Boolean function.
The second way is to use a non-linear filter generator that takes the output of one LFSR
at multiple stages and applies a filtering function to the bits. The third way is to use a
clock-controlled generator that uses two LFSRs. The first LFSR provides the output bits,
and the second LFSR instructs which of those bits to take for the stream. The first method
of combining LFSRs is used in this thesis.

A combining Boolean function works by taking the output of several LFSRs, then applies a
Boolean function to those bits to create a single output bit. Boolean functions are typically
represented in their algebraic normal form. An algebraic normal form iswritten as a function
of the sum of products of the input bits. A combiner operates in Z2 so all the operations
can be reduced to logical ANDs and XORs. The order of a Boolean combining function
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can be determined by finding the order of the highest term in the function. Equation 2.3 is
an example of a combiner of order 2 its in algebraic normal form.

f (x1, x2, x3) = x1 ⊕ x2x3 (2.3)

Figure 2.2 is Equation 2.3 depicted graphically.

Figure 2.2. A Combiner of the Form f (x1, x2, x3) = x1 ⊕ x2x3

So in Equation 2.3, x1 would come from the current output bit of the first LFSR, x2 from
the second LFSR and x3 from the third LFSR.

There are several things to take into account when selecting a Boolean function. One thing
to consider is the degree of the involved function. For example, an affine function would be
the Boolean function,

f (x) = x1 ⊕ x2,

while a quadratic function would be of the form

f (x) = x1x2 ⊕ x2.

One of the main purposes of using combiners is to destroy the linearity of an LFSR. To
achieve this end, higher degree Boolean functions are always chosen since they tend to have
significantly higher complexity than affine Boolean functions.
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Selection of the LFSRs used for input of a combiner needs to be done carefully in order
to ensure the combiner has maximal period and is cryptographically secure. One of the
main requirements is that the order of the LFSRs be pairwise relatively prime. Another
requirement is that the LFSRs be generated by primitive polynomials. With both of these
requirements met, the combiner will have maximal period (due to of primitiveness) and
maximal linear complexity (due to the relatively prime LFSRs). The linear complexity of
the combiner can be calculated by substituting in the orders of the respective LFSRs into
the polynomial representation of the combiner.

From [4], the linear complexity of the sequence u + v is

L(u + v) ≤ L(u) + L(v)

and the linear complexity of the sequence uv is

L(uv) ≤ L(u)L(v).

If the two LFSRs were chosen such they are of relatively prime order, then the inequality
will become an equality [4]. So in the previous example, if the order of LFSR1 was 11,
LFSR2 was 7, LFSR3 was 10, the total complexity of the combiner would be

f (L1, L2, L3) = 11 + 7 ∗ 10 = 81.

Another property of a Boolean function is whether or not it is balanced. A balanced
Boolean function is defined in [4] as one that produces a even number of 0’s and 1’s in its
output stream. Balanced Boolean functions are important because they are a prerequisite
for having a random stream output. While not a guarantee of randomness, a non-balanced
stream will not be random.

Example 2.2.1 shows the first 5 steps of the combiner from Equation 2.3.

Example 2.2.1 Values from f (x1, x2, x3) = x1 ⊕ x2x3

In Table 2.2, the combiner takes the input from three different LFSRs. The combiner then
acts on the input using the specified Boolean function to create an output bit.
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Table 2.2. First 5 Steps of Equation 2.3

Step LFSR1 LFSR2 LFSR3 Output Bit
0 1 0 0 1
1 0 1 1 1
2 0 0 0 0
3 1 0 1 1
4 1 1 1 0
5 0 1 0 0

2.3 Generalized Boolean Functions
A generalized Boolean function is a function f : Z2m → Z2n of the form

f (x) =
k∑

i=0
2iak(x),

where ak is in the set of feeding LFSR streams. A generalized Boolean function can take
its input from regular Boolean functions. The difference between a generalized Boolean
function and a regular Boolean function is that a generalized Boolean function outputs
a stream in Z2n rather than a stream in Z2. For Example, taking n = 1 the form of the
generalized Boolean function would be

f (a0, a1) = a0 + 2a1

and if n = 2 the form would be

f (a0, a1, a2) = a0 + 2a1 + 4a2.

Using a generalized Boolean function as a combiner is very similar to using a regular
Boolean function as a combiner.

Not much is known about the complexity or randomness properties of generalized Boolean
functions when they are implemented as a combiner. However, previous work has been done
that shows that the regular Boolean combiner choices and their sum needs to be balanced.
Finding a concrete way to calculate the linear complexity of the resultant stream is still an
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open problem.

2.4 Complexity of Sequences
Linear complexity is an important topic because it is one indicator of how secure a sequence
is. Definition 2.4.1 provides a definition of linear complexity.

Definition 2.4.1 The linear complexity, L, is defined for a sequence, s, as the order of the
shortest LFSR that generates s.

For a primitive LFSR with degree L it is known that the linear complexity will also be L

given a non-zero seed. Making primitiveness a requirement for LFSR selection is important
because it maximizes the complexity of the LFSR. One way to calculate the complexity of
a sequence is to use the Berlekamp-Massey Algorithm.

2.4.1 Berlekamp-Massey Algorithm
The Berlekamp-Massey Algorithm is an efficient way to calculate the linear complexity of
a finite binary sequence. The algorithm works by calculating an LFSR that can generate
the given finite sequence. Definition 2.4.2 and Algorithm 1 are taken from [3] to describe
how and why the algorithm works.

Definition 2.4.2 Consider the finite binary sequence sN+1 = s0, s1, · · · , sN−1, sN . For
C(D) = 1 + c1 + · · · + cL DL , let L,C(D) be an LFSR that generates the subsequence
sN = s0, s1, · · · , sN−1. The next discrepancy dN between sN and the (N +1)st term generated
by the LFSR is dN = (sN +

∑L
i=1 cisN−i) mod 2.
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Algorithm 1: Berlekamp-Massey Algorithm
Input: a binary sequence sn = s0, s1, s2, · · · , sn−1 of length n.
Output: the linear complexity L(sn) of sn, 0 ≤ L(sn) ≤ n.

1 Initialization: C(D) = 1, L = 0,m = −1, B(D) = 1, N = 0;
2 while N < n do
3 Compute the next discrepancy d;
4 if d = 1 then
5 T(D) = C(D);
6 C(D) = C(D) + B(D) ∗ DN−m;
7 if L ≤ N/2 then
8 L = N + 1 − L;
9 m = N;
10 B(D) = T(D);
11 end
12 end
13 N = N + 1;
14 end
15 Return(L);

One of the important things to note about the algorithm is that it has complexity O(n2) [3].
As a result, the algorithm is efficient for calculating streams up to a certain length, but once
the streams get long, it becomes very computationally intensive to run.
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CHAPTER 3:
Methodology

Through a combination of programs written by other researchers (for which wewill give due
credit) and programs we wrote, the data for this thesis was largely collected by generating
multiple sequences and then testing the results. The first step of our data collection was to
create a program that would generate our data. To accomplish this task we wrote a Python
program (included in the Appendix) that output the results from multiple generalized
Boolean functions to a file. We could then feed these sequences into our randomness tests
and linear complexity programs. Additionally, steps had to be taken to convert the Zn output
stream from the generalized Boolean functions to a binary stream suitable for testing.

In total, three LFSRs were chosen that were primitive and of maximal period. The output
of these LFSRs fed into seven sets of Boolean combiners. Of these seven sets, all were
balanced and their sums were balanced. Five sets were of quadratic form, and two were of
affine form. The output of the Boolean combiners was then used to generate the final stream
from a choice of two different generalized Boolean functions used as combiners. The final
stream was 106 bits long.

3.1 Randomness Tests
In order to test whether the stream produced through the generalized Boolean function
was random, the 15 tests from the National Institute of Standards and Technology (NIST)
statistical test suite were used. The tests were implemented using a Python program written
by Ilja Gerhardt [5]. This program took as its input either a binary file with the output
stream, or a text file with the output stream. We used text files to test our data because it ran
with the least issues. These tests only work on binary streams so our Z2n output obtained
from the generalized Boolean functions had to be converted into a binary sequence.

3.1.1 Converting to Z2
As mentioned in Section 2.3, the output of a generalized Boolean function is in Zn where
n is calculated by 22i . In this thesis we used i = 1 so all of our output for the generalized

15



Boolean functions were in Z4. One of the requirements of the NIST randomness tests and
the Berlekamp-Massey algorithms is that the tested sequence be a binary sequence. In order
to use these tests, we had to apply the following transformation to our output streams

0 → 00
1 → 01
2 → 10
3 → 11.

We propose that this simple binary transformation is sufficient to not affect any of the
randomness properties of the original stream. Care was taken to ensure that the result
transformation was of a fixed length in order to ensure that each input integer had an equal
value in the output stream. One of the consequences of this is that the output stream is twice
as long as in the input stream. Additionally, this transformation ensures that there are no
additional 0’s or 1’s inserted into the sequence that could potentially unbalance the resultant
stream. While there are certain small sequences that are unbalanced or have repetition of
bits as a result of the transformation, such as

201→ 100001,

this is not of concern because when sufficiently large sequences are taken, these runs average
out to not affect the overall randomness provided the original sequence was sufficiently
random.

3.1.2 NIST Randomness Tests
In this section, we describe the 15 tests in detail and give a brief description of how
to interpret their results. The tests and their implementation details are all thoroughly
explained in the paper published by the NIST and the details about the tests come from [6].
The following section draws very heavily on their technical explanations. For the tests, a
p-value of p < 0.01 is indicative of failing the randomness test.

The first test in the suite is the Monobit Frequency test. The Monobit Frequency test
measures the proportions of ones and zeros in the entire sequence. In a truly random
sequence, the number of zeros and ones should be in even proportion. This test calculates
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whether the input stream is approximately in the same proportion as a truly random stream.
If the p-value is very large, that indicates that their was either a disproportionally high
number of zeros or ones in the sequence [6].

The second test is theBlock Frequency test. Like the previous test, it measures the proportion
of 0’s to 1’s. However, the difference is that rather than measure the ratio over the entire
sequence, it measures it in size M-bit blocks. The proportion is calculated per block, with
the expected frequency to be M/2 if the sequence was random. If the block size is M = 1,
than it just the previous test. If sequence fails the test, this means that the proportion of
ones to zeros is higher in at least one of the blocks measured [6].

The third test is the Runs test. A run can be defined as k matching bits in a row. For
example, the sequence 01010001 has a run of 3 because there are 3 consecutive 0’s. In a
random sequence, there should not be any runs of exceptionally long length, and the runs
should vary between either bit roughly an equal number of times. If 0’s and 1’s are equally
likely, the probability of a run of length k is 1/2k . The first step of the runs test is to perform
a frequency test. If the frequency test fails, then the runs test is not performed. The test
statistic is given in [6] and can be calculated by

Vn(obs) =
n−1∑
k=1

r(k) + 1,

where r(k) = 0 if εk = εk+1, and r(k) = 1 otherwise. If the value of Vn(obs) is large, than
the sequence switched runs too quickly. A small value means the stream switched slowly.
This can be interpreted as a large value of Vn(obs) meaning that there were too many short
runs, and a small value of Vn(obs) as being that there were too many long runs [6].

The fourth test is a test for the Longest Runs of Ones in a block. This test looks to see if
the longest run of ones in an M-bit block is on par of the expected ones run of a random
sequence. A large test statistic is indicative of large runs of ones [6].

The fifth test is the Binary Rank Matrix test. This test looks at the rank of disjoint sub-
matrices of the entire sequence. NIST defines it as testing for "linear dependence among
fixed length substrings of the original sequence" [6]. For this test, NIST has set the sub-
matrices to be of size 32x32. The sub-matrices are filled in row by row from the original
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sequence. The rank for each sub-matrix is then computed, and the test statistic calculated.
A failing p-value would show that the rank distribution was not close to that of a random
sequence [6].

The sixth test is the Discrete Fourier Transform or Spectral test. This tests looks at the peak
heights of the Discrete Fourier Transform of the sequence. If the sequence is not random,
then the transform would have groups of periodic features or patterns. The test aims to find
"whether the number of peaks exceeding the 95% threshold is significantly different than
5%" [6]. The first step is to calculate the 95% peak threshold value, T , with

T =
√
( log(

1
0.05
)n).

The next step is to compute N0, the number of theoretically expected 95% peaks by N0 =

.95n/2. Next, the actual number of peaks that exceed the 95% threshold, N1 is tabulated. If
the test fails, then the value of d was too low indicative of greater than 5% of peaks above
the threshold [6].

The seventh and eighth tests are the Non-overlapping Template test and the Overlapping
Template test. Both tests count the number of occurrences of pre-specified target strings
in an m-bit window. This is to check to see if the sequence has a predictable patterns that
would display a lack of randomness. The tests work by taking a m-bit window from the
sequence, then comparing to the pre-selected string. For the non-overlapping template test,
if there is a match with the window and string, then window advances to the next m-bit
chunk. If there is not a match, the window advances 1 bit. For the overlapping template test,
a match will cause the window to advance by only a bit. Additionally, a miss will cause the
window to advance by only a bit. For both tests, NIST defines a small p-value as showing
that "the sequence has irregular occurrences of the possible template patterns" [6].

The ninth test is Maurer’s "Universal Statistical" test. This test measures whether the
sequence can be successfully compressed without loss of information. According to the
NIST guide, "a significantly compressible sequence is considered to be non-random" be-
cause patterns exist that the compression is able to take advantage of and reduce space [6].
This test looks at "the sum of log2 distances between matching L-bit templates" where L

is the block size [6]. If a low p-value is obtained, this shows that the sequence is highly
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compressible and not random.

The tenth test is the Linear Complexity test. Like stated in Section 2.4, the linear complexity
of the sequence can be defined as the order of the minimum LFSR required to generate the
sequence. A property of true random sequences is that have very high linear complexity.
This test requires at least 106 bits in order to be valid. The first step of this test is to
break the "n-bit sequence into N independent blocks of M bits, where n=MN" [6]. Then
using the Berlekamp-Massey algorithm, calculate the linear complexity, Li, of each of the
blocks. Using the linear complexity of each block, calculations are performed using the
theoretical mean in such a way to generate a chi squared distribution. If the p-value is below
the randomness cutoff, then that would imply that the blocks were of insufficient linear
complexity [6].

The eleventh test is the Serial test. One of the properties of a random sequence is uniformity.
This translates to the fact that every m-bit sequence has equal probability of appearing
as every other m-bit sequence. The test implements this by comparing the number of
occurrences of 2m m-bit overlapping patterns is similar to that of a random sequence. This
test is performed by taking the sequence and appending m − 1 bits to create an augmented
sequence, then analyzing the frequency of all overlapping m-bit blocks. If the test fails, it
shows that the m-bit blocks have non-uniformity [6].

The twelfth test is the Approximate Entropy test. This test is similar to the serial test in
that both look at overlapping patterns in m-bit sequences. With the approximate entropy
test, the area of interest is the frequency of m-bit sequences in two overlapping blocks offset
by 1 bit. The blocks are generated the same way as the serial test, except that the second
block is 1 bit larger. With each block, the number of overlapping m-bit sequences is tallied,
then the test statistic is calculated. If the test fails because the test statistic is too small,
then it implies "strong regularity" and if it is too large it implies "substantial fluctuation or
irregularity" [6].

The thirteenth test is the Cumulative Sums test. This test aims to measure "whether the
cumulative sum of the partial sequences occurring in the tested sequence is too large or too
small relative to the expected behavior of that cumulative sum for random sequences" [6].
If the sequence is random, then the expected result should be close to zero. For this test, the
sequence has the 0’s converted to −1, and the 1’s kept as 1’s. The next step is to calculate all

19



the partial sums up to the size of the sequence, then take the maximum value obtained. This
test is conducted twice; once with the partial sums done from the front, and once with the
partial sums calculated from the reversed sequence. These values are then used to calculate
the p-value. If the value is too small for the first value, then there were too many 1’s or 0’s
in the beginning of the sequence. If the second value is too small, then there were too many
1’s or 0’s in the end of the sequence [6].

The fourteenth and fifteenth tests are the Random Excursions and the Random Excursions
Variants test. These tests deal with cumulative sums random walks and how often each
sequence visits each state. Both test actually perform a series of individual tests which
result in list of p-values and whose meaning is beyond the scope of this thesis [6].

3.2 Experimental Procedure
The Python program that generated our data contains 3 LFSRs, 7 sets of two combiners and
2 generalized Boolean functions. The output of the LFSRs was used to feed all 7 sets of
combiners. For every set of combiners, the same two generalized Boolean functions were
applied. This was done to try and discern an effect of combiner choice.

3.2.1 LFSRs Choice
The LFSRs that were chosen for use are listed in Table 3.1.

Table 3.1. The 3 Choices of LFSRs

LFSR Polynomial Form

LFSR1: x11 + x6 + x5 + x4 + x3 + x + 1

LFSR2: x10 + x3 + 1

LFSR3: x7 + x5 + x3 + x + 1

The LFSRs were seeded using the Python rand() functions, which is (somewhat) crypto-
graphically secure PRNG and suitable for our applications. The order of the three LFSRs
were 7, 10, and 11. The choice of these three LFSRs made sure that order of all three
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were co-prime for reasons explained in Section 2.1. Additionally, all three are primitive
polynomials. The output of the LFSRs was fed into the choice of Boolean combiners.

3.2.2 Boolean Combiner Choice
The combiners were chosen to highlight the two different situations of having a quadratic
choice and an affine choice. The first five sets of combiners were pairs of quadratic Boolean
functions. The last two sets of combiners were pairs of affine Boolean functions. The 5 sets
of quadratic combiners are listed in Table 3.2.

Table 3.2. The 5 Choices of Quadratic Combiners Where xi Corresponds to

Output Bit of LFSRi

Set Combiner Choices
Set 1 C1: x0x1 + x0x2 + x2

C2: x0x1 + x2
Set 2 C1: x0x1 + x0x2 + x1

C2: x0x2 + x2x1 + x1
Set 3 C1: x0x2 + x1 + x2

C2: x0x1 + x1x2 + x2
Set 4 C1: x1x2 + x0x2 + x0

C2: x1x2 + x0
Set 5 C1: x1x2 + x0x1 + x0

C2: x0x2 + x1

The 2 sets of affine Boolean functions are listed in Table 3.3.

Table 3.3. The 2 Choices of A�ne Combiners Where xi Corresponds to

Output Bit of LFSRi

Set Combiner Choices
Set 6 C1: x0 + x1

C2: x1 + x2 + 1
Set 7 C1: x0 + x2 + 1

C2: x1 + x2

Both affine and quadratic Boolean functions were used to explore the effect of combiner
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choice on the generalized Boolean function, since it is unknown what effect the order of the
Boolean combiner choice has on the output of the generalized Boolean function stream. All
the combiners chosen are balanced, and the sum of each combiner in a set is also balanced.
The reason that it is important that the sum is balanced is based off the work of [7] which
proved that some good cryptographic properties for the generalized Boolean functions are
obtained if linear combinations of its components are balanced. We extend this notion by
claiming that imposing a balanced sum on its components will cause better behavior on the
generalized Boolean function output streams.

3.2.3 Generalized Boolean Function Choice
As mentioned previously, a generalized Boolean function outputs its stream in Zn. We took
our generalized Boolean functions to be in Z4. Table 3.4 lists the equations that were used
for our generalized Boolean functions.

Table 3.4. The 2 Choices of Generalized Boolean Functions Where ai Cor-

responds to Output Bit of Ci

GBF Choice
gf 1: x0 + 2x1
gf 2: x1 + 2x0

Both g f1 and g f2 were applied against every set of combiners from Table 3.2 and Table 3.3.
We took the lengths of the final stream to be 106 bits because that was the minimum number
of bits required for some of the randomness tests. The generalized Boolean functions were
then written to a text file for analysis.

3.3 Testing Sequences
After the streams were written to the file, two batteries of tests were performed. The first
test was a test of linear complexity. This was accomplished using the Berlekamp-Massey
Algorithm. The program that was used returned the order of the minimum generating LFSR
for that sequence. This test was performed on every generalized Boolean function combiner
stream. This test required that the output text file contains spaces between every bit.
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The second test was the NIST randomness test battery. The NIST test’s output the p-
value results from each test. The randomness tests were run against the first choice of the
generalized Boolean functions generated from set 1 and set 6 for a stream of 106 bits in
length. This test required that the output text file contain no spaces between every bit.

In addition, we looked at the frequency of each integer of the generalized Boolean function
stream to see if any patterns were apparent.
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CHAPTER 4:
Results and Analysis

Results from the linear complexity and randomness tests, in addition to some analysis on
this data will be provided in this chapter. One of the major results of this thesis was that
significant increases in linear complexity were obtained by using the generalized Boolean
function as a combiner of the Boolean combiner input. Additionally, our data shows that
high degrees of randomness can be achieved using either the higher order sets or the affine
sets.

As mentioned in Section 2.2 and 3.2.2, we hypothesized from the work of [7] that imposing
the requirement of having the sum of the combiners be balanced was necessary for achieving
a usable result. During preliminary testing of our data, we tried using multiple sets of
combiners who sum was not balanced, and the results were very poor. Since the effect was
so obvious, this thesis will only report the data from sets of combiners who sum is balanced.

4.1 Linear Complexity Results
The increase in linear complexity obtained from using a generalized Boolean function
as a combiner is one of the most significant results of this thesis. In Table 4.1, the
linear complexity of each combiner of every set and the resultant linear complexity of
the generalized functions is listed. Additionally, the average complexity of the Boolean
combiners per set is given.

From this data several things are apparent. The first thing of notice is how the choice of
generalizedBoolean function does not affect the linear complexity of the output stream. This
can be explained simply using the structure of the generalized Boolean function. Recalling
Section 2.3 and Section 3.2.3, the structure of the two generalized Boolean functions we
used was

f (a0, a1) = a0 + 2a1.

This function will output a stream in Z4. To generate each of elements certain values of a0

and a1 need to be used. To generate a 0, a0 = 0 and a1 = 0. To generate a 1, a0 = 1 and
a1 = 1. This continues until the entire set is generated. Looking at these facts, we see that
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Table 4.1. The Linear Complexity of the Generated Streams

Set 1
L(C1) L(C2) L(gf 1) L(gf 2) (L(C2) + L(C1))/2
158 81 119.5 550 550

Set 2
L(C1) L(C2) L(gf 1) L(gf 2) (L(C2) + L(C1))/2
157 197 534 534 177

Set 3
L(C1) L(C2) L(gf 1) L(gf 2) (L(C2) + L(C1))/2
98 191 548 548 144.5

Set 4
L(C1) L(C2) L(gf 1) L(gf 2) (L(C2) + L(C1))/2
194 117 316 316 155.5

Set 5
L(C1) L(C2) L(gf 1) L(gf 2) (L(C2) + L(C1))/2
187 87 556 556 137

Set 6
L(C1) L(C2) L(gf 1) L(gf 2) (L(C2) + L(C1))/2
17 22 58 58 19.5

Set 7
L(C1) L(C2) L(gf 1) L(gf 2) (L(C2) + L(C1))/2
18 21 58 58 19.5

the only thing that changes between the output of gf 1 and gf 2 is when a 1 is generated in
gf 1, a 2 is generated in gf 2. Similarly, when a 2 is generated in gf 1, a 1 is generated in gf 2.
Table 4.2 shows the frequency of occurrences from the data generated by Set 1.

Looking at this data, the number of 1’s and 2’s generated in gf 1 matches the number of 2’s
and 1’s generated in gf 2 while the numbers of 0’s and 3’s does not change. We propose

26



Table 4.2. Frequency of Integers of Stream from Set 1

gf 1
0: 124040 1: 126076 2: 124863 3: 125021

gf 2
0: 124040 1: 124863 2: 126076 3: 125021

that this explains why the linear complexity of both generalized functions is the same. This
lack of change is the result of a simple transformation that has no effect on the complexity
of the generating stream because it is just simply switching in place every 1 and 2.

Another interesting result is the significant increase in complexity of the gf 1 and gf 2

streams from the regular Boolean combiners. Figure 4.1 provides a chart that shows the
large increases.

Figure 4.1. Linear Complexity of the Generalized Boolean Functions and

Their Input Combiners
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From this it is clear the significant increases in complexity that is occurring. In almost
all sets, roughly a three-fold increase in complexity is achieved over the average input
complexity. Even in the affine sets, the increase is significant. However, in Set 7, the
complexity of the generated stream is less than then the others. We have not found a
satisfactory reason to fully explain this result, however since all of the Sets used the same
LFSR data and applied the same generalized Boolean functions, we suspect this is a result
of an unknown interaction between the combiners that were chosen.

In Figure 4.2, the average linear complexity of the Boolean combiners of each quadratic set
is plotted against the linear complexity of the generalized Boolean function.

Figure 4.2. The Average Complexity of a Input Set Versus the Complexity

of the Generalized Boolean Function

One of the interesting things this graph shows is the general lack of an upward trend in
complexity as average linear complexity increased. Intuitively, it would make sense that as
average linear complexity increased, the average generalized Boolean function complexity
would also increase, resulting in an line of slope 1 in Figure 4.2. However, this data seems
to show a lack of an increase as the average input complexity increases. In fact, the value
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of Set 4 of 316 does not fit into the general pattern at all. This data would seem to suggest
that the complexity of the generalized Boolean function stream is not directly dependent on
the complexities of its inputs. However, this data set only has 5 points, and is therefore not
sufficiently large to warrant drawing any wide reaching conclusion.

4.2 Quadratic Set Randomness Results
This section will present the data from the randomness tests from Section 3.1 which were
run against our data. For the tests, the Serial test was not included since there was an error
in the code that prevent it from completing successfully. Completion of the randomness
tests took a significant amount of time due to the length of the streams used. We therefore
looked specifically at the results from Set 1 and Set 6 for this section.

Figure 4.3 shows the number of NIST tests of various stream lengths which passed. A
p-value of less than 0.01 is considered failing. For this set of tests, we looked at the effect of
increasing the stream length on randomness. Since our generalized Boolean function have
linear complexities that are around 500, we suspected that as the stream length approaches
a million the performance on sum of the tests decreases due to the relatively smaller linear
complexity of the sequence.

Looking these results, there does appear to be a slight decrease in randomness performance
as stream length increases. Overall though, passing a minimum of 11 tests is still a good
result. The stream length of 100,000 passed all the tests, which is a very good result. Figure
4.4 shows the p-values of the individual tests, the decreasing trend is more apparent here.

From this figure it is clear that there is a general downward trend as the stream length
increases. Since the minimum recommended length for several of the NIST tests is one
million bits, Figure 4.5 displays the p-values from the results of the one million bit stream.

Looking at specific tests, some of the results are expected. For example, the failing linear
complexity p-value is to be expected since the linearity of the sequence is so low relative
to stream length. Additionally, the tests that focus on blocks, like the Block Frequency Test,
non-Overlapping and Overlapping tests, have higher p-values since they do not look at the
entire stream length at a time, so having a longer stream will not hurt that score.
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Figure 4.3. Number of Randomness Tests the Quadratic Set Passed by

Stream Length

Overall for the quadratic tests, the results are logical and show that good levels of randomness
can be obtained using the generalized Boolean function as a combiner.

4.3 Affine Set Randomness Results
This section will present the randomness results of affine sets. We decided to test the affine
sets because we thought that the linear nature of the affine functions would create poor
randomness. Our results however seemed to suggest that the affine streams had good levels
of randomness. Figure 4.6 shows the number of passed tests for the affine set as stream
length increases.
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Figure 4.4. E�ect on p-value as Stream Size Increases

With passing an average of 11 tests, the affine results seem to suggest that this is a good
source of randomness. However, this set is lacking the downward trend that was seen in the
quadratic set. In Figure 4.7, this lack of trend is apparent.

Looking at this data it shows that the p-values remain roughly consistent over stream length.
Given all these facts, and comparing to the results of the quadratic functions we are hesitant
to draw a conclusion on the randomness of the affine sets.

It is worth noting, that for both the quadratic and affine sets, we generated a new sequence
of data to see if the results were consistent across many trails and found a high degree of
variability. This could be due to the small linear complexity of the streams, but its exact
reason is unknown. Additionally, this variability was only for the randomness tests and
not the linear complexity, so that may indicate it was a problem with the program used for
testing and not the data.
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Figure 4.5. p-values for Quadratic Set of One Million Bits by Test

Figure 4.6. Number of Randomness Tests the A�ne Set Passed
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Figure 4.7. E�ect on p-value as Stream Size Increases
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CHAPTER 5:
Conclusion and Future Work

5.1 Conclusion
This thesis proposes a PRNG using generalized Boolean functions as combiners and has
shown the streams exhibit increases in complexity as well as appear to be random. The most
significant take away from this thesis is the large increase in linear complexity. However,
we are unable to find an analytically way of calculating a number for the complexity. Given
the data we presented, there is not a obvious way to predict what the complexity will be.
This could be a opportunity for future work in this area. As is shown in Figure 4.2, the
complexity does not appear to be directly dependent on average input size. We suspect
that it had more to do with the choice of combiners and some interaction that is occurring.
Additionally, our data set was small, so any large patterns might not be seen. For future
work, we suggest taking LFSRs of significant higher complexity and taking the generalized
Boolean function to be in a larger space so that more varied data, and data that mimics what
might be actually used in application, can be gathered. Also further study exploring the
interaction between the combining Boolean functions could be fruitful. We want to stress
that while the tests we performed only tested Boolean combiners that were of affine and
quadratic degrees, we do not think that the results only apply to those degrees. Future work
with combiners of higher degree could confirm this, but there is no reason to limit these
results to only quadratic combiners. Overall, these results are promising and significant and
are a good start for an area where not much is known.

For the randomness results of the streams, we found that the quadratic sets of the combiner
choices exhibit good randomness properties. We found that they tended to decrease as size
of bit stream increased, which was expected. For future work we think that increasing the
complexity of the sequence would help get more randomness results because it would allow
the tests to have the streams to be more suitable for the one million bit stream length required
for some of the tests. For the affine tests, we found that they reported good results, however
we were hesitant to draw conclusions about the data due to the very linear nature of the
data. Since affine functions are never used in application, this result is not significant. For
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the randomness tests, future work should also aim to repeat these results as we had some
variability in our data in successive trials.

One thing that would be interesting for future work is to try and rewrite some of the
NIST tests to work natively in integers. While we do not think our transformation to a
binary stream hurt our results, it would be interesting if there was a measurable difference.
Additionally, this thesis intentionally did not mention any cryptanalysis attacks that the
generalized Boolean function might be susceptible to. Another fruitful endeavor would be
to explore the vulnerably of these generators to common PRNG attacks.

In conclusion, this thesis explored an area where not much is known. We found some
very promising and interesting data on the significant increase in linear complexity that
comes from using a generalized Boolean function, and found that the streams exhibit good
randomness properties. In the future, much work can be done expanding what we have
accomplished.
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APPENDIX: Code Used for Generating Streams
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APPENDIX A:
Code Used for Generating Streams

A.1 Python Code for Generating Streams
The following is a listing of the Python code that was used to generate the data used in this
thesis. It was designed to run on Python 2.7 and is operating system independent.

1 # ! / u s r / b i n / env py thon
2
3 import random
4
5 #AUTHOR
6 # O l i v e r Di Na l l o
7 #2LT , US Army
8 #Program Wr i t t e n f o r Mas te r s T h e s i s " Gen e r a l i z e d Boolean

Func t i o n s as Combiners "
9

10 #USAGE:
11 #To use , run program . Gen e r a l i z e d Boolean f u n c t i o n combiner

o u t p u t w i l l be w r i t t e n t o f i l e s p e c i f i e d i n o u t p u t s t r eam
12 # Ad j u s t i n t S t r e am t o s p e c i f y ou tpu t , c o n s i d e r i n g b i n a r y

t r a n s f o rma t i o n w i l l doub l e s t r eam l e n g t h
13 # w r i t t e n f o r Python 2 . 7
14
15
16 INITIALIZATION
17 # each l f s r i s r e p r e s e n t e d by an ar ray o f i n t s t h a t co r r e spond t o

t h e t a p s
18 # l f s r 1 = x ^11 + x ^6 + x ^5 + x ^4 + x ^3 +x ^1 + 1 # b i t s =

11
19 l f s r 1 T a p = [ 1 1 , 6 , 5 , 4 , 3 , 1 ]
20 # l f s r 2 = x ^10 + x ^3 + 1

# b i t s = 10
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21 l f s r 2 T a p = [ 1 0 , 3 ]
22 # l f s r 3 = x ^7 + x ^5 + x ^3 + x + 1

# b i t s = 7
23 l f s r 3 T a p = [ 7 , 5 , 3 , 1 ]
24 t a p s = [ l f s r 1Tap , l f s r 2Tap , l f s r 3 T a p ]
25
26 # f i n d s t h e degree o f l f s r
27 maxTap1 = max ( l f s r 1 T a p )
28 maxTap2 = max ( l f s r 2 T a p )
29 maxTap3 = max ( l f s r 3 T a p )
30 maxTaps = [ maxTap1 , maxTap2 , maxTap3 ]
31
32 # g e t random seed f o r l f s r s
33 l f s r 1 = 0
34 l f s r 2 = 0
35 l f s r 3 = 0
36 # en s u r e s non− z e r o i n t i a l s eed
37 whi le ( l f s r 1 == 0) | ( l f s r 2 == 0) | ( l f s r 3 == 0) :
38 l f s r 1 = random . g e t r a n d b i t s ( 1 1 )
39 l f s r 2 = random . g e t r a n d b i t s ( 1 0 )
40 l f s r 3 = random . g e t r a n d b i t s ( 7 )
41 l f s r s = [ l f s r 1 , l f s r 2 , l f s r 3 ]
42
43 # i n i t i a l i z e a r r a y s f o r s t o r a g e o f l f s r , combiner , and g e n e r a l i z e d

f u n c t i o n o u t p u t
44 # i f i n c r e a s i n g or d e c r e a s i n g number o f any e q u a t i o n s uses , be

su r e t o upda t e a r ray s i z e s a c c o r d i n g l y
45 l f s r B i t = [ 0 , 0 , 0 ]
46 comb ine rB i t = [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]
47 genFuncBi t = [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]
48 genFuncS t r i n g = [ " " , " " , " " , " " , " " , " " , " " , " " , " " , " " , " " , " " , " " , " " ]
49 genFuncS t r i ngSpace = [ " " , " " , " " , " " , " " , " " , " " , " " , " " , " " , " " , " " , " " , " "

]
50
51 # s e t t h i s t o s p e f i c y o u t p u t s t r eam
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52 i n t S t r e amLeng t h = 500000
53 j =0
54
55
56 whi le j < i n t S t r e amLeng t h :
57 #LFSRS
58 f o r i in range ( 0 , l en ( l f s r s ) ) :
59 x i = reduce ( lambda x , y : x^y , map ( lambda x : l f s r s

[ i ] >> ( maxTaps [ i ]−x ) , t a p s [ i ] ) )&1
60 l f s r B i t [ i ] = l f s r s [ i ]&1
61 l f s r s [ i ] = ( l f s r s [ i ] >> 1) | ( x i << ( maxTaps [ i

] −1) )
62
63 #COMBINERS
64 # see t h e s i s f o r a l g e b r a i c normal form o f combiner s
65 # q u a d r a t i c combiner s s e t 1
66 comb ine rB i t [ 0 ] = l f s r B i t [ 0 ] & l f s r B i t [ 1 ] ^ l f s r B i t [0]&

l f s r B i t [ 2 ] ^ l f s r B i t [ 2 ]
67 comb ine rB i t [ 1 ] = l f s r B i t [ 0 ] ^ l f s r B i t [ 1 ] & l f s r B i t [ 2 ]
68 # q u a d r a t i c combiner s s e t 2
69 comb ine rB i t [ 2 ] = l f s r B i t [0]& l f s r B i t [ 1 ] ^ l f s r B i t [0]&

l f s r B i t [ 2 ] ^ l f s r B i t [ 1 ]
70 comb ine rB i t [ 3 ] = l f s r B i t [0]& l f s r B i t [ 2 ] ^ l f s r B i t [2]&

l f s r B i t [ 1 ] ^ l f s r B i t [ 1 ]
71 # # q u a d r a t i c combiner s s e t 3
72 comb ine rB i t [ 4 ] = l f s r B i t [0]& l f s r B i t [ 2 ] ^ l f s r B i t [ 1 ] ^

l f s r B i t [ 2 ]
73 comb ine rB i t [ 5 ] = l f s r B i t [0]& l f s r B i t [ 1 ] ^ l f s r B i t [1]&

l f s r B i t [ 2 ] ^ l f s r B i t [ 2 ]
74 # q u a d r a t i c combiner s s e t 4
75 comb ine rB i t [ 6 ] = l f s r B i t [1]& l f s r B i t [ 2 ] ^ l f s r B i t [0]&

l f s r B i t [ 2 ] ^ l f s r B i t [ 0 ]
76 comb ine rB i t [ 7 ] = l f s r B i t [1]& l f s r B i t [ 2 ] ^ l f s r B i t [ 0 ]
77 # q u a d r a t i c combiner s s e t 5

41



78 comb ine rB i t [ 8 ] = l f s r B i t [1]& l f s r B i t [ 2 ] ^ l f s r B i t [0]&
l f s r B i t [ 1 ] ^ l f s r B i t [ 0 ]

79 comb ine rB i t [ 9 ] = l f s r B i t [0]& l f s r B i t [ 2 ] ^ l f s r B i t [ 1 ]
80 # a f f i n e combiner s s e t 6
81 comb ine rB i t [ 1 0 ] = l f s r B i t [ 0 ] ^ l f s r B i t [ 1 ]
82 comb ine rB i t [ 1 1 ] = l f s r B i t [ 1 ] ^ l f s r B i t [ 2 ] ^ 1
83 # a f f i n e combiner s s e t 7
84 comb ine rB i t [ 1 2 ] = l f s r B i t [ 0 ] ^ l f s r B i t [ 2 ] ^ 1
85 comb ine rB i t [ 1 3 ] = l f s r B i t [ 1 ] ^ l f s r B i t [ 2 ]
86
87 # Gene r a l i z e d Boolean Func t i o n s
88 # i t s t h e same two f u n c t i o n s a p p l i e d t o each s e t o f

comb iner s
89 # r e f e r e n c e t h e s i s f o r a l g e b r a i c normal form
90 #quad s e t 1
91 # g f1
92 genFuncBi t [ 0 ] = ( comb ine rB i t [ 0 ] + 2∗ comb ine rB i t [ 1 ] ) % 4
93 # g f2
94 genFuncBi t [ 1 ] = ( comb ine rB i t [ 1 ] + 2∗ comb ine rB i t [ 0 ] ) % 4
95 #quad s e t 2
96 # g f1
97 genFuncBi t [ 2 ] = ( comb ine rB i t [ 2 ] + 2∗ comb ine rB i t [ 3 ] ) % 4
98 # g f2
99 genFuncBi t [ 3 ] = ( comb ine rB i t [ 3 ] + 2∗ comb ine rB i t [ 2 ] ) % 4
100 #quad s e t 3
101 # g f1
102 genFuncBi t [ 4 ] = ( comb ine rB i t [ 4 ] + 2∗ comb ine rB i t [ 5 ] ) % 4
103 # g f2
104 genFuncBi t [ 5 ] = ( comb ine rB i t [ 5 ] + 2∗ comb ine rB i t [ 4 ] ) % 4
105 #quad s e t 4
106 # g f1
107 genFuncBi t [ 6 ] = ( comb ine rB i t [ 6 ] + 2∗ comb ine rB i t [ 7 ] ) % 4
108 # g f2
109 genFuncBi t [ 7 ] = ( comb ine rB i t [ 7 ] + 2∗ comb ine rB i t [ 6 ] ) % 4
110 #quad s e t 5
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111 # g f1
112 genFuncBi t [ 8 ] = ( comb ine rB i t [ 8 ] + 2∗ comb ine rB i t [ 9 ] ) % 4
113 # g f2
114 genFuncBi t [ 9 ] = ( comb ine rB i t [ 9 ] + 2∗ comb ine rB i t [ 8 ] ) % 4
115 # a f f i n e s e t 1
116 # g f1
117 genFuncBi t [ 1 0 ] = ( comb ine rB i t [ 1 0 ] + 2∗ comb ine rB i t [ 1 1 ] ) %

4
118 # g f2
119 genFuncBi t [ 1 1 ] = ( comb ine rB i t [ 1 1 ] + 2∗ comb ine rB i t [ 1 0 ] ) %

4
120 # a f f i n e s e t 2
121 # g f1
122 genFuncBi t [ 1 2 ] = ( comb ine rB i t [ 1 2 ] + 2∗ comb ine rB i t [ 1 3 ] ) %

4
123 # g f2
124 genFuncBi t [ 1 3 ] = ( comb ine rB i t [ 1 3 ] + 2∗ comb ine rB i t [ 1 2 ] ) %

4
125
126 f o r i in range ( 0 , l en ( genFuncBi t ) ) :
127 b i n S t r i n g = bin ( genFuncBi t [ i ] ) [ 2 : : ] . r j u s t ( 2 , ’ 0 ’ )
128 s t r i n g = b i n S t r i n g [0 ]+ b i n S t r i n g [ 1 ]
129 space = b i n S t r i n g [0 ]+ " ␣ "+ b i n S t r i n g [1 ]+ " ␣ "
130 genFuncS t r i n g [ i ]+= s t r i n g
131 genFuncS t r i ngSpace [ i ]+= space
132
133 j +=1
134
135 f i l eNames = [ ’ quad1_gf1 ’ , ’ quad1_gf2 ’ , ’ quad2_gf1 ’ , ’ quad2_gf2 ’ , ’

quad3_gf1 ’ , ’ quad3_gf2 ’ , ’ quad4_gf1 ’ , ’ quad4_gf2 ’ , ’ quad5_gf1 ’ , ’
quad5_gf2 ’ , ’ a f f i n e 1 _ g f 1 ’ , ’ a f f i n e 1 _ g f 2 ’ , ’ a f f i n e 2 _ g f 1 ’ , ’
a f f i n e 2 _ g f 2 ’ ]

136
137
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138 #uncomment t h i s b l o c k i f you want t h e o u t p u t w r i t t e n as b i n a r y
da ta

139 # f o r j i n range ( 0 , l e n ( f i l eName s ) ) :
140 # f i l eName = f i l eName s [ j ]+" . b i n "
141 # w i t h open ( f i l eName , "wb " ) as g :
142 # g . w r i t e ( g enFuncS t r i ng [ j ] . decode ( ’ hex ’ ) )
143
144
145 # #uncomment t h i s b l o c k i f you want t h e o u t p u t w r i t t e n as a t e x t

f i l e w i t h NO space s
146 # f o r t i n range ( 0 , l e n ( f i l eName s ) ) :
147 # f i l eName = f i l eName s [ t ]+" . t x t "
148 # w i t h open ( f i l eName , "w" ) as q :
149 # q . w r i t e ( g enFuncS t r i ng [ t ] )
150
151 # #uncomment t h i s b l o c k i f you want t h e o u t p u t w r i t t e n as a t e x t

f i l e w i t h space s
152 # f o r t i n range ( 0 , l e n ( f i l eName s ) ) :
153 # f i l eName = f i l eName s [ t ]+" . t x t "
154 # w i t h open ( f i l eName , "w" ) as q :
155 # q . w r i t e ( genFuncS t r i ngSpace [ t ] )
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